The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

For guidelines related to screening for increased risk for type 2 diabetes (prediabetes), please refer to Section 2 “Classification and Diagnosis of Diabetes.”

Recommendation

  • 3.1 At least annual monitoring for the development of type 2 diabetes in those with prediabetes is suggested. E

Screening for prediabetes and type 2 diabetes risk through an informal assessment of risk factors (Table 2.3) or with an assessment tool, such as the American Diabetes Association risk test (Fig. 2.1), is recommended to guide providers on whether performing a diagnostic test for prediabetes (Table 2.5) and previously undiagnosed type 2 diabetes (Table 2.2) is appropriate (see Section 2 “Classification and Diagnosis of Diabetes”). Those determined to be at high risk for type 2 diabetes, including people with A1C 5.7−6.4% (39−47 mmol/mol), impaired glucose tolerance, or impaired fasting glucose, are ideal candidates for diabetes prevention efforts. Using A1C to screen for prediabetes may be problematic in the presence of certain hemoglobinopathies or conditions that affect red blood cell turnover. See Section 2 “Classification and Diagnosis of Diabetes” and Section 6 “Glycemic Targets” for additional details on the appropriate use of the A1C test.

At least annual monitoring for the development of diabetes in those with prediabetes is suggested.

Recommendations

  • 3.2 Refer patients with prediabetes to an intensive behavioral lifestyle intervention program modeled on the Diabetes Prevention Program (DPP) to achieve and maintain 7% loss of initial body weight and increase moderate-intensity physical activity (such as brisk walking) to at least 150 min/week. A

  • 3.3 Based on patient preference, technology-assisted diabetes prevention interventions may be effective in preventing type 2 diabetes and should be considered. B

  • 3.4 Given the cost-effectiveness of diabetes prevention, such intervention programs should be covered by third-party payers. B

The Diabetes Prevention Program

Several major randomized controlled trials, including the Diabetes Prevention Program (DPP) (1), the Finnish Diabetes Prevention Study (DPS) (2), and the Da Qing Diabetes Prevention Study (Da Qing study) (3), demonstrate that lifestyle/behavioral therapy featuring an individualized reduced calorie meal plan is highly effective in preventing type 2 diabetes and improving other cardiometabolic markers (such as blood pressure, lipids, and inflammation). The strongest evidence for diabetes prevention comes from the DPP trial (1). The DPP demonstrated that an intensive lifestyle intervention could reduce the incidence of type 2 diabetes by 58% over 3 years. Follow-up of three large studies of lifestyle intervention for diabetes prevention has shown sustained reduction in the rate of conversion to type 2 diabetes: 45% reduction at 23 years in the Da Qing study (3), 43% reduction at 7 years in the DPS (2), and 34% reduction at 10 years (4) and 27% reduction at 15 years (5) in the U.S. Diabetes Prevention Program Outcomes Study (DPPOS). Notably, in the 23-year follow-up for the Da Qing study, reductions in all-cause mortality and cardiovascular disease–related mortality were observed for the lifestyle intervention groups compared with the control group (3).

The two major goals of the DPP intensive, behavioral, lifestyle intervention were to achieve and maintain a minimum of 7% weight loss and 150 min of physical activity similar in intensity to brisk walking per week. The DPP lifestyle intervention was a goal-based intervention: all participants were given the same weight loss and physical activity goals, but individualization was permitted in the specific methods used to achieve the goals (6).

The 7% weight loss goal was selected because it was feasible to achieve and maintain and likely to lessen the risk of developing diabetes. Participants were encouraged to achieve the 7% weight loss during the first 6 months of the intervention. However, longer-term (4-year) data reveal maximal prevention of diabetes observed at about 7–10% weight loss (7). The recommended pace of weight loss was 1−2 lb/week. Calorie goals were calculated by estimating the daily calories needed to maintain the participant's initial weight and subtracting 500−1,000 calories/day (depending on initial body weight). The initial focus was on reducing total dietary fat. After several weeks, the concept of calorie balance and the need to restrict calories as well as fat was introduced (6).

The goal for physical activity was selected to approximate at least 700 kcal/week expenditure from physical activity. For ease of translation, this goal was described as at least 150 min of moderate-intensity physical activity per week similar in intensity to brisk walking. Participants were encouraged to distribute their activity throughout the week with a minimum frequency of three times per week with at least 10 min per session. A maximum of 75 min of strength training could be applied toward the total 150 min/week physical activity goal (6).

To implement the weight loss and physical activity goals, the DPP used an individual model of treatment rather than a group-based approach. This choice was based on a desire to intervene before participants had the possibility of developing diabetes or losing interest in the program. The individual approach also allowed for tailoring of interventions to reflect the diversity of the population (6).

The DPP intervention was administered as a structured core curriculum followed by a more flexible maintenance program of individual sessions, group classes, motivational campaigns, and restart opportunities. The 16-session core curriculum was completed within the first 24 weeks of the program and included sections on lowering calories, increasing physical activity, self-monitoring, maintaining healthy lifestyle behaviors, and psychological, social, and motivational challenges. For further details on the core curriculum sessions, refer to ref. 6.

Nutrition

Structured behavioral weight loss therapy, including a reduced calorie meal plan and physical activity, is of paramount importance for those at high risk for developing type 2 diabetes who have overweight or obesity (1,7). Because weight loss through lifestyle changes alone can be difficult to maintain long term (4), people being treated with weight loss therapy should have access to ongoing support and additional therapeutic options (such as pharmacotherapy) if needed. Based on intervention trials, the eating patterns that may be helpful for those with prediabetes include a Mediterranean eating plan (811) and a low-calorie, low-fat eating plan (5). Additional research is needed regarding whether a low-carbohydrate eating plan is beneficial for persons with prediabetes (12). In addition, evidence suggests that the overall quality of food consumed (as measured by the Alternative Healthy Eating Index), with an emphasis on whole grains, legumes, nuts, fruits and vegetables, and minimal refined and processed foods, is also important (1315).

Whereas overall healthy low-calorie eating patterns should be encouraged, there is also some evidence that particular dietary components impact diabetes risk in observational studies. Higher intakes of nuts (16), berries (17), yogurt (18,19), coffee, and tea (20) are associated with reduced diabetes risk. Conversely, red meats and sugar-sweetened beverages are associated with an increased risk of type 2 diabetes (13).

As is the case for those with diabetes, individualized medical nutrition therapy (see Section 5 “Lifestyle Management” for more detailed information) is effective in lowering A1C in individuals diagnosed with prediabetes (21).

Physical Activity

Just as 150 min/week of moderate-intensity physical activity, such as brisk walking, showed beneficial effects in those with prediabetes (1), moderate-intensity physical activity has been shown to improve insulin sensitivity and reduce abdominal fat in children and young adults (22,23). On the basis of these findings, providers are encouraged to promote a DPP-style program, including its focus on physical activity, to all individuals who have been identified to be at an increased risk of type 2 diabetes. In addition to aerobic activity, an exercise regimen designed to prevent diabetes may include resistance training (6,24). Breaking up prolonged sedentary time may also be encouraged, as it is associated with moderately lower postprandial glucose levels (25,26). The preventive effects of exercise appear to extend to the prevention of gestational diabetes mellitus (GDM) (27).

Technology-Assisted Interventions to Deliver Lifestyle Interventions

Technology-assisted interventions may effectively deliver the DPP lifestyle intervention, reducing weight and, therefore, diabetes risk (2831). Such technology-assisted interventions may deliver content through smartphone and web-based applications and telehealth (28). The Centers for Disease Control and Prevention (CDC) Diabetes Prevention Recognition Program (DPRP) (www.cdc.gov/diabetes/prevention/lifestyle-program) does certify technology-assisted modalities as effective vehicles for DPP-based interventions; such programs must use an approved curriculum, include interaction with a coach (which may be virtual), and attain the DPRP outcomes of participation, physical activity reporting, and weight loss. The selection of an in-person or virtual program should be based on patient preference.

Cost-effectiveness

A cost-effectiveness model suggested that the lifestyle intervention used in the DPP was cost-effective (32,33). Actual cost data from the DPP and DPPOS confirmed this (34). Group delivery of DPP content in community or primary care settings has the potential to reduce overall program costs while still producing weight loss and diabetes risk reduction (3537). The use of community health workers to support DPP efforts has been shown to be effective with cost savings (38) (see Section 1 “Improving Care and Promoting Health in Populations” for more information). The CDC coordinates the National Diabetes Prevention Program (National DPP), a resource designed to bring evidence-based lifestyle change programs for preventing type 2 diabetes to communities (www.cdc.gov/diabetes/prevention/index.htm). Early results from the CDC's National DPP during the first 4 years of implementation are promising (39). In an effort to expand preventive services using a cost-effective model that began in April 2018, the Centers for Medicare & Medicaid Services has expanded Medicare reimbursement coverage for the National DPP lifestyle intervention to organizations recognized by the CDC that become Medicare suppliers for this service (https://innovation.cms.gov/initiatives/medicare-diabetes-prevention-program/).

Tobacco Use

Smoking may increase the risk of type 2 diabetes (40); therefore, evaluation for tobacco use and referral for tobacco cessation, if indicated, should be part of routine care for those at risk for diabetes. Of note, the years immediately following smoking cessation may represent a time of increased risk for diabetes (4042) and patients should be monitored for diabetes development and receive evidence-based interventions for diabetes prevention as described in this section. See Section 5 “Lifestyle Management” for more detailed information.

Recommendations

  • 3.5 Metformin therapy for prevention of type 2 diabetes should be considered in those with prediabetes, especially for those with BMI ≥35 kg/m2, those aged <60 years, and women with prior gestational diabetes mellitus. A

  • 3.6 Long-term use of metformin may be associated with biochemical vitamin B12 deficiency, and periodic measurement of vitamin B12 levels should be considered in metformin-treated patients, especially in those with anemia or peripheral neuropathy. B

Pharmacologic agents including metformin, α-glucosidase inhibitors, glucagon-like peptide 1 receptor agonists, thiazolidinediones, and several agents approved for weight loss have been shown in research studies to decrease the incidence of diabetes to various degrees in those with prediabetes (1,4349), though none are approved by the U.S. Food and Drug Administration specifically for diabetes prevention. One has to balance the risk/benefit of each medication. Metformin has the strongest evidence base (50) and demonstrated long-term safety as pharmacologic therapy for diabetes prevention (48). For other drugs, cost, side effects, and durable efficacy require consideration.

Metformin was overall less effective than lifestyle modification in the DPP and DPPOS, though group differences declined over time (5) and metformin may be cost-saving over a 10-year period (34). It was as effective as lifestyle modification in participants with BMI ≥35 kg/m2 but not significantly better than placebo in those over 60 years of age (1). In the DPP, for women with history of GDM, metformin and intensive lifestyle modification led to an equivalent 50% reduction in diabetes risk (51), and both interventions remained highly effective during a 10-year follow-up period (52). In the Indian Diabetes Prevention Programme (IDPP-1), metformin and the lifestyle intervention reduced diabetes risk similarly at 30 months; of note, the lifestyle intervention in IDPP-1 was less intensive than that in the DPP (53). Based on findings from the DPP, metformin should be recommended as an option for high-risk individuals (e.g., those with a history of GDM or those with BMI ≥35 kg/m2). Consider monitoring vitamin B12 levels in those taking metformin chronically to check for possible deficiency (54) (see Section 9 “Pharmacologic Approaches to Glycemic Treatment” for more details).

Recommendation

  • 3.7 Prediabetes is associated with heightened cardiovascular risk; therefore, screening for and treatment of modifiable risk factors for cardiovascular disease is suggested. B

People with prediabetes often have other cardiovascular risk factors, including hypertension and dyslipidemia (55), and are at increased risk for cardiovascular disease (56). Although treatment goals for people with prediabetes are the same as for the general population (57), increased vigilance is warranted to identify and treat these and other cardiovascular risk factors (e.g., smoking).

Recommendation

  • 3.8 Diabetes self-management education and support programs may be appropriate venues for people with prediabetes to receive education and support to develop and maintain behaviors that can prevent or delay the development of type 2 diabetes. B

As for those with established diabetes, the standards for diabetes self-management education and support (see Section 5 “Lifestyle Management”) can also apply to people with prediabetes. Currently, there are significant barriers to the provision of education and support to those with prediabetes. However, the strategies for supporting successful behavior change and the healthy behaviors recommended for people with prediabetes are comparable to those for diabetes. Although reimbursement remains a barrier, studies show that providers of diabetes self-management education and support are particularly well equipped to assist people with prediabetes in developing and maintaining behaviors that can prevent or delay the development of diabetes (21,58).

Suggested citation: American Diabetes Association. 3. Prevention or delay of type 2 diabetes: Standards of Medical Care in Diabetes—2019. Diabetes Care 2019;42(Suppl. 1):S29–S33

1.
Knowler
WC
,
Barrett-Connor
E
,
Fowler
SE
, et al.;
Diabetes Prevention Program Research Group
.
Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin
.
N Engl J Med
2002
;
346
:
393
403
2.
Lindström
J
,
Ilanne-Parikka
P
,
Peltonen
M
, et al.;
Finnish Diabetes Prevention Study Group
.
Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study
.
Lancet
2006
;
368
:
1673
1679
3.
Li
G
,
Zhang
P
,
Wang
J
, et al
.
Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study
.
Lancet Diabetes Endocrinol
2014
;
2
:
474
480
4.
Knowler
WC
,
Fowler
SE
,
Hamman
RF
, et al.;
Diabetes Prevention Program Research Group
.
10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study
.
Lancet
2009
;
374
:
1677
1686
5.
Nathan
DM
,
Barrett-Connor
E
,
Crandall
JP
, et al
.
Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study
.
Lancet Diabetes Endocrinol
2015
;
3
:
866
875
6.
Diabetes Prevention Program (DPP) Research Group
.
The Diabetes Prevention Program (DPP): description of lifestyle intervention
.
Diabetes Care
2002
;
25
:
2165
2171
7.
Hamman
RF
,
Wing
RR
,
Edelstein
SL
, et al
.
Effect of weight loss with lifestyle intervention on risk of diabetes
.
Diabetes Care
2006
;
29
:
2102
2107
8.
Salas-Salvadó
J
,
Bulló
M
,
Babio
N
, et al.;
PREDIMED Study Investigators
.
Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial
.
Diabetes Care
2011
;
34
:
14
19
9.
Salas-Salvadó
J
,
Guasch-Ferré
M
,
Lee
C-H
,
Estruch
R
,
Clish
CB
,
Ros
E
.
Protective effects of the Mediterranean diet on type 2 diabetes and metabolic syndrome
.
J Nutr
2016
;
146
:
920S
927S
10.
Bloomfield
HE
,
Koeller
E
,
Greer
N
,
MacDonald
R
,
Kane
R
,
Wilt
TJ
.
Effects on health outcomes of a Mediterranean diet with no restriction on fat intake: a systematic review and meta-analysis
.
Ann Intern Med
2016
;
165
:
491
500
11.
Estruch
R
,
Ros
E
,
Salas-Salvadó
J
, et al.;
PREDIMED Study Investigators
.
Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts
.
N Engl J Med
2018
;
378
:
e34
12.
Noto
H
,
Goto
A
,
Tsujimoto
T
,
Noda
M
.
Long-term low-carbohydrate diets and type 2 diabetes risk: a systematic review and meta-analysis of observational studies
.
J Gen Fam Med
2016
;
17
:
60
70
13.
Ley
SH
,
Hamdy
O
,
Mohan
V
,
Hu
FB
.
Prevention and management of type 2 diabetes: dietary components and nutritional strategies
.
Lancet
2014
;
383
:
1999
2007
14.
Jacobs
S
,
Harmon
BE
,
Boushey
CJ
, et al
.
A priori-defined diet quality indexes and risk of type 2 diabetes: the Multiethnic Cohort
.
Diabetologia
2015
;
58
:
98
112
15.
Chiuve
SE
,
Fung
TT
,
Rimm
EB
, et al
.
Alternative dietary indices both strongly predict risk of chronic disease
.
J Nutr
2012
;
142
:
1009
1018
16.
Afshin
A
,
Micha
R
,
Khatibzadeh
S
,
Mozaffarian
D
.
Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis
.
Am J Clin Nutr
2014
;
100
:
278
288
17.
Mursu
J
,
Virtanen
JK
,
Tuomainen
T-P
,
Nurmi
T
,
Voutilainen
S
.
Intake of fruit, berries, and vegetables and risk of type 2 diabetes in Finnish men: the Kuopio Ischaemic Heart Disease Risk Factor Study
.
Am J Clin Nutr
2014
;
99
:
328
333
18.
Chen
M
,
Sun
Q
,
Giovannucci
E
, et al
.
Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis
.
BMC Med
2014
;
12
:
215
19.
Dehghan
M
,
Mente
A
,
Rangarajan
S
, et al.;
Prospective Urban Rural Epidemiology (PURE) study investigators
.
Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): a prospective cohort study
.
Lancet
.
11 September 2018 [Epub ahead of print]. DOI: 10.1016/S0140-6736(18)31812-9
20.
Mozaffarian
D
.
Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review
.
Circulation
2016
;
133
:
187
225
21.
Parker
AR
,
Byham-Gray
L
,
Denmark
R
,
Winkle
PJ
.
The effect of medical nutrition therapy by a registered dietitian nutritionist in patients with prediabetes participating in a randomized controlled clinical research trial
.
J Acad Nutr Diet
2014
;
114
:
1739
1748
22.
Fedewa
MV
,
Gist
NH
,
Evans
EM
,
Dishman
RK
.
Exercise and insulin resistance in youth: a meta-analysis
.
Pediatrics
2014
;
133
:
e163
e174
23.
Davis
CL
,
Pollock
NK
,
Waller
JL
, et al
.
Exercise dose and diabetes risk in overweight and obese children: a randomized controlled trial
.
JAMA
2012
;
308
:
1103
1112
24.
Sigal
RJ
,
Alberga
AS
,
Goldfield
GS
, et al
.
Effects of aerobic training, resistance training, or both on percentage body fat and cardiometabolic risk markers in obese adolescents: the healthy eating aerobic and resistance training in youth randomized clinical trial
.
JAMA Pediatr
2014
;
168
:
1006
1014
25.
Thorp
AA
,
Kingwell
BA
,
Sethi
P
,
Hammond
L
,
Owen
N
,
Dunstan
DW
.
Alternating bouts of sitting and standing attenuate postprandial glucose responses
.
Med Sci Sports Exerc
2014
;
46
:
2053
2061
26.
Healy
GN
,
Dunstan
DW
,
Salmon
J
, et al
.
Breaks in sedentary time: beneficial associations with metabolic risk
.
Diabetes Care
2008
;
31
:
661
666
27.
Russo
LM
,
Nobles
C
,
Ertel
KA
,
Chasan-Taber
L
,
Whitcomb
BW
.
Physical activity interventions in pregnancy and risk of gestational diabetes mellitus: a systematic review and meta-analysis
.
Obstet Gynecol
2015
;
125
:
576
582
28.
Grock
S
,
Ku
J-H
,
Kim
J
,
Moin
T
.
A review of technology-assisted interventions for diabetes prevention
.
Curr Diab Rep
2017
;
17
:
107
29.
Sepah
SC
,
Jiang
L
,
Peters
AL
.
Translating the Diabetes Prevention Program into an online social network: validation against CDC standards
.
Diabetes Educ
2014
;
40
:
435
443
30.
Bian
RR
,
Piatt
GA
,
Sen
A
, et al
.
The effect of technology-mediated diabetes prevention interventions on weight: a meta-analysis
.
J Med Internet Res
2017
;
19
:
e76
31.
Sepah
SC
,
Jiang
L
,
Peters
AL
.
Long-term outcomes of a Web-based diabetes prevention program: 2-year results of a single-arm longitudinal study
.
J Med Internet Res
2015
;
17
:
e92
32.
Herman
WH
,
Hoerger
TJ
,
Brandle
M
, et al.;
Diabetes Prevention Program Research Group
.
The cost-effectiveness of lifestyle modification or metformin in preventing type 2 diabetes in adults with impaired glucose tolerance
.
Ann Intern Med
2005
;
142
:
323
332
33.
Chen
F
,
Su
W
,
Becker
SH
, et al
.
Clinical and economic impact of a digital, remotely-delivered intensive behavioral counseling program on Medicare beneficiaries at risk for diabetes and cardiovascular disease
.
PLoS One
2016
;
11
:
e0163627
34.
Diabetes Prevention Program Research Group
.
The 10-year cost-effectiveness of lifestyle intervention or metformin for diabetes prevention: an intent-to-treat analysis of the DPP/DPPOS
.
Diabetes Care
2012
;
35
:
723
730
35.
Ackermann
RT
,
Finch
EA
,
Brizendine
E
,
Zhou
H
,
Marrero
DG
.
Translating the Diabetes Prevention Program into the community. The DEPLOY Pilot Study
.
Am J Prev Med
2008
;
35
:
357
363
36.
Balk
EM
,
Earley
A
,
Raman
G
,
Avendano
EA
,
Pittas
AG
,
Remington
PL
.
Combined diet and physical activity promotion programs to prevent type 2 diabetes among persons at increased risk: a systematic review for the Community Preventive Services Task Force
.
Ann Intern Med
2015
;
163
:
437
451
37.
Li
R
,
Qu
S
,
Zhang
P
, et al
.
Economic evaluation of combined diet and physical activity promotion programs to prevent type 2 diabetes among persons at increased risk: a systematic review for the Community Preventive Services Task Force
.
Ann Intern Med
2015
;
163
:
452
460
38.
The Community Guide
.
Diabetes prevention: interventions engaging community health workers [Internet], 2016
.
39.
Ely
EK
,
Gruss
SM
,
Luman
ET
, et al
.
A national effort to prevent type 2 diabetes: participant-level evaluation of CDC’s National Diabetes Prevention Program
.
Diabetes Care
2017
;
40
:
1331
1341
40.
Yeh
H-C
,
Duncan
BB
,
Schmidt
MI
,
Wang
N-Y
,
Brancati
FL
.
Smoking, smoking cessation, and risk for type 2 diabetes mellitus: a cohort study
.
Ann Intern Med
2010
;
152
:
10
17
41.
Oba
S
,
Noda
M
,
Waki
K
, et al
.
Smoking cessation increases short-term risk of type 2 diabetes irrespective of weight gain: the Japan Public Health Center-Based Prospective Study
[published correction appears in PLoS One 2013;8:10.1371/annotation/23aa7c42-9a4d-42a7-8f50-9d0ac4b85396]
.
PLoS One
2012
;
7
:
e17061
42.
Hu
Y
,
Zong
G
,
Liu
G
, et al
.
Smoking cessation, weight change, type 2 diabetes, and mortality
.
N Engl J Med
2018
;
379
:
623
632
43.
Chiasson
J-L
,
Josse
RG
,
Gomis
R
,
Hanefeld
M
,
Karasik
A
,
Laakso
M
;
STOP-NIDDM Trail Research Group
.
Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial
.
Lancet
2002
;
359
:
2072
2077
44.
Torgerson
JS
,
Hauptman
J
,
Boldrin
MN
,
Sjöström
L
.
XENical in the prevention of Diabetes in Obese Subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients
.
Diabetes Care
2004
;
27
:
155
161
45.
le Roux
CW
,
Astrup
A
,
Fujioka
K
, et al.;
SCALE Obesity Prediabetes NN8022-1839 Study Group
.
3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial
.
Lancet
2017
;
389
:
1399
1409
46.
Gerstein
HC
,
Yusuf
S
,
Bosch
J
, et al.;
DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators
.
Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial
.
Lancet
2006
;
368
:
1096
1105
47.
DeFronzo
RA
,
Tripathy
D
,
Schwenke
DC
, et al.;
ACT NOW Study
.
Pioglitazone for diabetes prevention in impaired glucose tolerance
.
N Engl J Med
2011
;
364
:
1104
1115
48.
Diabetes Prevention Program Research Group
.
Long-term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study
.
Diabetes Care
2012
;
35
:
731
737
49.
Garvey
WT
,
Ryan
DH
,
Henry
R
, et al
.
Prevention of type 2 diabetes in subjects with prediabetes and metabolic syndrome treated with phentermine and topiramate extended release
.
Diabetes Care
2014
;
37
:
912
921
50.
Moin
T
,
Schmittdiel
JA
,
Flory
JH
, et al
.
Review of metformin use for type 2 diabetes prevention
.
Am J Prev Med
2018
;
55
:
565
574
51.
Ratner
RE
,
Christophi
CA
,
Metzger
BE
, et al.;
Diabetes Prevention Program Research Group
.
Prevention of diabetes in women with a history of gestational diabetes: effects of metformin and lifestyle interventions
.
J Clin Endocrinol Metab
2008
;
93
:
4774
4779
52.
Aroda
VR
,
Christophi
CA
,
Edelstein
SL
, et al.;
Diabetes Prevention Program Research Group
.
The effect of lifestyle intervention and metformin on preventing or delaying diabetes among women with and without gestational diabetes: the Diabetes Prevention Program Outcomes Study 10-year follow-up
.
J Clin Endocrinol Metab
2015
;
100
:
1646
1653
53.
Ramachandran
A
,
Snehalatha
C
,
Mary
S
,
Mukesh
B
,
Bhaskar
AD
,
Vijay
V
;
Indian Diabetes Prevention Programme (IDPP)
.
The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1)
.
Diabetologia
2006
;
49
:
289
297
54.
Aroda
VR
,
Edelstein
SL
,
Goldberg
RB
, et al.;
Diabetes Prevention Program Research Group
.
Long-term metformin use and vitamin B12 deficiency in the Diabetes Prevention Program Outcomes Study
.
J Clin Endocrinol Metab
2016
;
101
:
1754
1761
55.
Ali
MK
,
Bullard
KM
,
Saydah
S
,
Imperatore
G
,
Gregg
EW
.
Cardiovascular and renal burdens of prediabetes in the USA: analysis of data from serial cross-sectional surveys, 1988–2014
.
Lancet Diabetes Endocrinol
2018
;
6
:
392
403
56.
Huang
Y
,
Cai
X
,
Mai
W
,
Li
M
,
Hu
Y
.
Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis
.
BMJ
2016
;
355
:
i5953
57.
Bress
AP
,
King
JB
,
Kreider
KE
, et al.;
SPRINT Research Group
.
Effect of intensive versus standard blood pressure treatment according to baseline prediabetes status: a post hoc analysis of a randomized trial
.
Diabetes Care
2017
;
40
:
1401
1408
58.
Butcher
MK
,
Vanderwood
KK
,
Hall
TO
,
Gohdes
D
,
Helgerson
SD
,
Harwell
TS
.
Capacity of diabetes education programs to provide both diabetes self-management education and to implement diabetes prevention services
.
J Public Health Manag Pract
2011
;
17
:
242
247
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.